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SUMMARY

The flow about a body of revolution at high supersonic airspeeds is
investigated analytically with the ald of the generalized shock-expansion
method. With the assumption that flow at the vertex i1s conical, approxi-
mate solutions for the flow field are obtained for values of the hyper-
sonic similarity parameter (i.e., the ratio of the free-stream Mach number
to the fineness ratio of the body) greater than esbout 1 and for angles of
attack less than the semivertex angle of the body. Surface streamlines
are approximated by meridian lines and the flow field is calculated
in meridian planes. Simple explicit expressions are cobtained for the
surface Mach numbers and pressures in the special case of slender bodies.

In the case of 1lifting cones, algebralic solutions defining the entire
flow field are obtained when the hypersonic similarity parameter has a
value of about 1.4 or grester.

Surface pressures and shock-wave shapes were obtained experimentally
at Mach numbers from 3.00 to 5.05 and angles of attack up to 15° for two
oglves having fineness ratios of 3 and 5 and for two cones having the
seme vertex angles das the ogives. The predictions of the methods of this
paper are found to be in good agreement with experiment at values of the
hypersonic similarity parameter in the neighborhood of 1 and greater,
when the ratio of angle of attack to semivertex angle is sbout one-half,
or less. For increasing values of this ratio, agreement deteriorates but
mey still be considered fair for values slightly less than 1.

INTRODUCTION

It was suggested in reference 1 that flow over the surface of a non-
lifting body of revolution could be treated as two-dimensionel in type
downstream of the vertex when the hypersonic similarity parameter (1i.e.,
the ratio of the free-gtream Mach number to the fineness ratio of the body)
was greaster than sbout 1. This point was substantiated by comparing predic-
tions of two-dimensional (Prandtl-Meyer) expansion theory with those of
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characteristics theory for the Mach numbers and pressures on the surfaces
of ogives. The two-dimensional theory has the advantage, of course, of
being relstively simple by comparison to characteristies theory and is
gbout as simple as the recently proposed hypersonic small disturbance
theory of Van Dyke (ref. 2).

It was also suggested in reference 1 that the two-dimensional approach
might be extended to the calculation of flow at the surface of slightly
inclined bodies of revolution. This thought led to a study (ref. 3) of
three-dimenslional hypersonic flows which revealed that such flows may
often appear locally two-dimensional. It was concluded that at hypersonic
speeds the entire flow field about a three-dimensional body may, under
certain conditions, be calculated with a shock-expansion method similar
to that employed for calculating two-dimensional flow about airfoils
(ref. 4). The conditions of when and how this generalized shock-expansion
method can be applied to calculate three-dimensional flows were determlned
in reference 3,

The principal objective of the present paper is to apply the general-
ized shock-expansion method to obtain expressions yielding the Mach number
and pressure distributions throughout the entire flow fleld sbout an
inclined body of revolution. In order to apply the shock-expansion method,
it 1s necessary to know initisl conditions at the vertex of a lifting
body. These conditions can be taken to be the same as those gbout a cone
tangent to the body at the vertex. One objective of this paper, then, 1s
to develop a conical flow theory for lifting cones over the range of free-
?tream ?ach numbers and apex angles not treated in the M.I.T. tables

ref. 5).

NOTATION
a local speed of sound, ft/sec
Cy normal-force coefficlent, normaléfarce

aon(d /)

) specific heat at constant pressure; ft-lb/slug Or
Cy specific heat at constant volume, ft-1b/slug °r
d maximum diamete£ of body of revolution, in.
E entropy, ft-1b/slug °R
H total pressure, 1b/sq in.
K hyrersonic similarity rarameter, MO-% o }
1 characteristic body length (measured from vertex to most for-

ward polnt of maximum diemeter), in,
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M Mach number (ratio of local velocity to local speed of sound)

P static pressure, 1b/sq in.

o dynamic pressure, lb/sq in.

P pressure coefficient, ELitgkl

R gas constant, £t-1b/slug °R

u veloclity component parallel to ray passing through vertex of
cone, ft/sec

v velocity component normal to u in a meridian plane, ft/sec

W velocity component normal to a meridisn plane, ft/sec

v resultant velocity, Ju2 + v2 + w2, ft/sec

¥ maximum wvelocity obtainable by expanding to zero temperature,
ft/sec

X distance along axis of body measured from vertex, in.

r distance normal to axis of body, in.

o angle of attack, radians unless otherwise specified

B Mach angle, arc sin % s, radians unless otherwise specified

4 ratio of specific heats, %E .

5 angle of flow inclination in meridian plane measured with respect

to body axis, radians unless otherwise specified

€ angle of inclination of axis of conical shock with respect to
free-stream direction, radians unless otherwise specified

1 angle of inclination of axis of conical shock with respect to
axis of body, radians unless otherwise specifiled

p mass density, slugs/cu ft

0] angle of merdian plane with respect to plane of symmetry,

radiens unless otherwise specified (see fig. 1)

w angle between axis of cqne and ray passing through vertex of cone,
radians unless otherwise specified
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Subscripts

o free-stream conditions

é’g! } conditions at different points in the flow field

e conditions on the surface of a cone
e condltions at the external surface of the vorticel layer
N conditions on the surface at the vertex of a body
8 conditions immediately behind the shock wave at the vertex of a
body
THEORY

J

This investigation is concerned with the theoretical and experimental
characteristics of the flow about bodies of revolution traveling at high
supersonic airspeeds and at small angles of attack. It is assumed through-
out the snalysis that the disturbed flow is everywhere supersgonic and,
hence, the body has a pointed nose or vertex. With these restrictions
on the free-stream Mach numwber, angle of attack, and body shape, the bow
shock wave will lie elose to the surface of the body. The procedure for
determining flow conditions in such flow fields is analogous to that
employed in reference 1 for the case of axially symmetric flow flelds;
nemely, the flow field is studied in two parts - flow at the vertex and
flow downstream of the vertex. The combined results of these two phases
of the investigation will then be applied to the determination of the
whole flow field and, in particular, to the determination of flow prop-
erties on the body surface and the re'sulting shock-wave shape.

Flow at the Vertex of a Lifting Body

It follows from the assumptions baslc to this analysis that the flow
at the vertex will be the same as for a cone ‘tangent to the body at the
vertex and immersed in the same free stream. All derivatives with respect
to radial distance vanish for these conditions, and the equations of motion
and continuity in spherical polar coordinates become (a schematic diagram
of the polar coordinate system is shown in fig. 1)
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v, W %2 y2_0 (1a)

v ov + — ov + 1 o + uv - wecot w =0 (1b)
dw sinwdp P ow
ow v_ oW 1 op

—— + —  —— + + ot w=0 1

Vow  sin e 3 o sin w o uwE e (1e)
and
. dp : ov dp ow

20usinw+vs:an-—+psinw—+vpcosm+w—+p—=0 2)

dw dw f ) o (

respectively. Since the total energy in the flow is constant, the fol-
lowing relations must be satisfied:

A GE-3D (3 D)

y <1ap p 3\ __ [, du, v, O (3)

The entropy at any point in the flow may be expressed as

4
2ono =72y e [E (B )

Equations (1), (2), end (3) together with the relation

a2 =2 ; 1 ($2 - v2)

may be combined (by eliminating the pressure and density terms) to obtain
the general eguation of motion
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7 1'(62 ~v®)(ou+veotw + O 4L W) 2 - 2 -
e dw sin w 0@

which, when combined with the appropriate shock-weve relations, defines
the flow about a circular cone immersed at an angle of attack in a super-
sonic strean.,

Conditions at the shock wave.- In order to obtain algebrailc solutions
for flow at the vertex, it 1s necessary to make some simplifying assump-
tions regerding the flow fileld. To this end, the conical shock is assumed
to be circular but inclined at an angle € to the free stream.? Then,
the .angular difference between the cone axis and the shock axls is

-e . (6)

3
|
Q

Now, the shock-wave angle measured from the cone axis, wg, is referred

to the free-stream direction by wg + o cos @. The shock-wave angle
measured from the shock axis, (ws)cp + mn, 1s referred to the free-stream
direction by (ws)g=o + 1 + € cos @. Hence,

ws + @& cos @ = (Wg)p=o + M + € COS @

and by virtue of expression (6) the resulting equation for the shock
angle may be written? .

wg = (ws)¢=o + n(1l - cos @) (1)

where (ws)¢=o is the shock angle in the plane of symmetry on the windward

lExperimental results indicate (as will be shown later) that for small
angles of attack the conical shock does, in fact, remain nearly circular.
Other investigators (notebly Stone, see, e.g., ref. 6) have made a similar
assumption. It should be noted, however, that the additional aessumption
commonly employed, nemely, that the conlcal- shock apex angle is the same
as in the nonyaw case, 18 not made here. '

27t should be noted that all angles asre measured with respect to the
body axls. The procedure of developing all pertinent expressions in the
body coordinate system will be employed throughout the analysis.
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side of the cone (see fig. 1). Similarly, the meridian angle ¢g, measured
with respect to the shock axis, may be related to the meridian angle o,
measured with respect to the cone axis, by

sin @; = sin (1 - 1 cot w cos o)
and

cos Qg = cos ¢ + N cot w sinZp

The shape of the conical shock having been specified, the velocity com-
ponents at the shock may be obtained from the oblique-shock-wave relations

ug = Vocos[wg + a(cos @ + N cot wgsinZp) ] (8)

wg = Voe sin o(1 - 1 cot wgcos @) (9)
1 usf' WST

vVs 7 -1 i i (10)

7 7 + 1 Vg

—= sinfwg + alcos @ + 7 cot wgsin®p)]
\'

If the shock angles in the plane of symmetry were known, flow conditions
around the entire shock could be determined since the shock-wave angle

in any plane could be determined from equation (7). In order to determine
these shock-wave angles, it is necessary to determine the crossflow
component of velociﬁy, w, throughout the flow field. Attention is there-
fore turned in this direction.

Determination of crossflow component of velocity.- Recalling the
basic assumption to this analysis, namely, that flow fields of the type
under consideration are characterized by the bow shock lying close to
the surface of the body (i.e., w - 8 €« < 1), it is reasoned that the
variation of w with w should be small and it is assumed that

w = wy(w)wa(op) (11)

Now wao(@) is given by equation (9). There remains, then, the determina-
tion of wi(w) in any meridian plane. To this end, consider equation (1a).
Differentiating this equation twice with respect to @ and once with
respect to w yields, in the plane of symmetry,
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2 2
g;% = sin w (jili + %% cot Q) (12)
=0 w
Now, if we let
aav _ F( )
'a—cgg = Flw (13)

equation (12) becomes, upon integration with respect to w,

%ﬁ sin w = <§§) sin wg 'k/PwSF(w)dw (14)
8

W

Consider now the integral term in the above equation. At the surface of
the body (v = 0)

Flw) =0

Since it. seems reasonable that -F(w) will be & monotonic function between
the surface and the shock wave, it is assumed that this function will
attain its maximum value at the shock and may be written (from egs. (8),
(9): (lO), and (13)) :

o(y - 1 - (Voe)Mpe
Flwg = ‘Szl”“l'[vbcos(ws +a)(e - 2un cot wg) + o~’ 9o -
7+ 1 Mgsin(wg + @)
7 -1 1
1+—/—7 (e - 2an cot wg)Vocos(wg + @)
y+ 1 A MyZsin®(wg + a)

2

Now, according to the above expression, F(w) 1s a maximum when

Mosin(wg + @) is & minimum. Since Mosin(wg + @) > 1 for attached shock
waves, the maximum value of F(w) can be determined by setting

Mosin(wg + a) equal to 1 in the sbove expression. Hence, since Mo€ ~ 1,
there results :

2(y - 1)
2 T ye-3-7 -
Flw) < 771 o e Vocos(wg + a)(e - 2an cot wg)
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Hence,
[F(w) | <e

and it follows that

(1]
mesF(w)dw <L/r Se dw = e(ws - We)

W Wa

Therefore the integral term in equation (14) is, at most, second order
and can be neglected in this analysis. Equation (14) now can be written

< > sin wg
sin w
Hence,

sin Wg
wi(w) = sin w

end it appears that expression (11) is a logical assumption since the
veriation of w with w is, in fact, small, Combination of the sgbove
expression with equations (9) and (11) yields, then,

sin w

EIE73§ sin ¢(1 - 1 cot wgcos @) (15)

w =VO€

defining the crossflow component of the wvelocity anywhere in the flow
field relative to the cone axis.

Having determined an expression for w throughout the flow fleld,
one can now obtaln a solution to the flow in the plane of symmetry in a
manner analogous to that presented in reference 1 for the case of axially
symmetric conical flows. Since the calculation of the flow in this plane
requires simultaneous solutions of the conical flow equations and the
oblique shock-wave relations, the procedure is somewhat involved and,
hence, is given in Appendix A, After (ms) and € have been determined
from Appendix A, conditions around the ent e shock front can be deter-
mined from equations (6) through (10). Determination of flow conditions
around the cone surface will now be considered,.

Flow conditions on the surface.- It has been shown by Ferri in refer-
ence 7 that to the first order In o the entropy remsins constant in a
meridian plane (having the value that exists at the shock in that plane)
until a vortical layer is reached gt the surface of the body across which
a varlation of entropy occurs. Since the entropy on the surface is
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constant, 1t must have the same value that exists in the plane ¢ = O.
Now the thickness of the vortical layer being of the order of a2, the
pressure remains constant through the layer to the first order of «
and the component of veloclty normal to the surface can be considered
zero on the external side of the layer. Hence, across this vortical
layer

Pe = Pe
Vo =Veg =0
and
EC = (E)q)=0

where the subscripts c and e refer to quantities inslde and outside the
layer, respectively. Consider now an expression relating u and w on
the surface of the cone which may be obtained from equation (1a); namely,

Su _ w sin 8,
or
®
u = (Ve)gp=o + sin -5cf v do (16)
o

Since the thickness of the vortical layer is proportional to o2, the
normael component of the velocity is zero through the layer and the above
expression holds on either side of the vortical layer. An expression for
the velocity and, hence, the Mach number externally adjacent to the vorti-
cal layer may then be easily determined as follows. The expression for
the crossflow at the vortical layer may be written in the form (from

eq. (15))

We Vo sin wg

= €
(VC)(P=O (vc)cp=o sin 8c

sin (1 - n cot wgcos @) (17)
Substituting this expression in equation (16) yields, upon integration,

e -1 Yo € sin ws<i - cos Q@ - % cot mssin2@> (18)
(Vedg=o (Ve)p=o
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The Mach number at the external side of the vortical layer, Mg, may be
determined from the relation

y - 1 2 Ve 2_
- 2 (MC)QW{[(Vc)q;m] 1]

MeZ =

where, of course,

2
Ve ue2 + W
= 2
(VC)q)-_:O (Vc)q),:o

The velocity end the Mach number in the ¢ = O plane are given by (see
Appendix A)

8c-8g
wg=Bg
<;L _ cos(wg - Bg)
Vs/p=0 - [(50 - 8)(wg - 58)]
cos
Sc - 55
and
2
2 v
e
B/o=0\yg =0
(M)cp

1 - Z—;—]‘ (Ms);=o [<%>q2>=o ) ]

respectively, where



(7 + 1)2MO4sin2[(ws)q)=o + u.] - h{MozsmE[(ms)¢=o + u.:, - 1} {ﬂoaﬂiﬂa[(ms)q,,o ¥ a.:’ + 1}

S ST R RSy (R DRMON

If one employs the condition that the pressure is constant across the vortical layer, an
expression defining the Mach number directly on the surface of the body, Mq, in terms of the Mach

number at the vortical layer, may be obtained; nsmely,

5 Be-Fe .
2\ “yoo 2
Mc2=7ﬂ1+1‘13)e rev " 5TT (EOI)

vhere (since Eq = (E)q,=o)

-K
Ee-Be MDESinBl:(wS)cpm + u.] {(7 - l)Mozs:an[ws + alcos ¢ + 1 cot wssinacp)] + 2}

7
e
L![oas’.fl_na'[mB + a(cos @ + 3 cot mssinaq:b):l{(y - l)Mozsine[(ms)mm + u,] +2} .

i
7
2yMoZsin?{wg + afcos @ + 1 cobt wgsinp)] - (¥ ~ 1) (22)

ero®s1 (ue), + @] < (7 - 1)

Since the flow is isentropic in the ¢ = O plane (downstream of the shock wave) and around the
surface of the body inside the vortical layer, the pressure coefficlent anywhere on the surface

may, of course, be obtained by the expression

[E]
v

G4EE NI VOVN
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¢ oME Po  (pg)

-1 (22)

=0
where
(ps)<p=o 27Moasin2[(ws)¢=o + on} - (y - 1)
Po - 7+ 1
y -1, .2 97T
P__ _ Tt (Ms)tp=0
(ps)q,=o 1+ L;_l w2

and M2 is given by equation (20).

Flow ¢onditions off the surface.- Flow conditions in the plane of
symmetry, on the surface of the cone, and at the conical shock having
been determined, the flow throughout the remainder of the flow field may
now be calculated. Since only high Mach number flows are considered in
this analysis, the variation of the magnitude of the resultant velocity
in & meridian plane will be small. Hence, the variation of u and v will
be small and may be represented by a power series in (w - Sc) where the
coefficients are determined by the requirements

u = ug at w =B,
u = ug at w = wg
é&:(—a—%) at m=8c
dw dw/e

and
v=20 at W =5c
V=VS at W = Wg

|

§
S
&1y
(]

&

e

"

o

0
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Thus,

u=ue+<au>( Se)<w5_-5>+(us ue)w—a"c)

. (23) J

and

v = (a-a—- (w - 85) <“’s :5c> Vg <$s--5§c> €22

vhere wg, Ug, Ve, and Ue

ere given by equations.(7), (8), (10), and
(18) , respectively.

There remeins now the determination of (du/dw). and
(0v/dw) ¢« To this end, consider equation (1b). Just outside the vortical
layer this equation reduces to

op >
G’ du/e veTeot Be | (25)

It will be recalled that the entropy was assumed constant between the
shock and the vorticel layer in each meridisn plane. Now Euler's equae-

tion for compressible flow along a stream tube may be written
(p = constant)

i1, X
P dw dw

Combination of this expression with equation (25) yields

1
< g:: = - we2cot 8,
from which may be obtained (noting that at the surface V2 = u® + w°)
@), - GG, vt o] ()
e e
where we 1s given by equation (17) end
> - VE :iz :S cot 8o5in @(l - n cot wgcos @) (27
c
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Now from equation (5) there results (setting v = 0)

ovy _ o veY 4] -
S0, = [ue + csc Gc(acp e][Me Vo l} Ue (28)

where Mg 1is known from equation (19) and from equation (15)

sin
(2@) ST B, ———= (cos @ -~ 7 cot wgcos 2¢) (29)

The components of the local velocity anywhere in the flow field external
to the vortical layer are now known from equations (15), (23), and (24).
Hence, the magnitude end direction of the resultant velocity and, con-
sequently, the Mach number may easily be determined. If the Mach number
is known, the local pressure (in coefficient form) may be obtained any-
where 1n the flow field with the aid of the expression

2 /Ps p _
P=7M02 %5; ) (30)

where

Py 2MoZsin®[uwg + a(cos @ + 7 cot wgsin®e)] - (7 - 1)
-I)—o_.

(31)

7+ 1

P L+ 7 5 l -_—-
i = . 7 = l 2 (32)

The Mach number and pressure distribution (as well as the orientation of
the conical shock) are now known throughout the flow fleld around a 1ift-
ing circular cone.

and, of course,

The range of applicability of the results of this analysis is con-
sidered to be the same as that of the nonlifting cone solutions presented
in reference 1. This results from the fact that when o = 0, equation (AT)
in Appendix A reduces identically to the equation defining the deflection
angle in reference 1. As was pointed out in this reference, when



16 NACA TN 33k9

Mg(ws - 8¢) >1/2 an imeginery value of 8z is obtained. If o >0,
equation ?AT) ylelds a real value of B8g, (for Mg(wg - 8c) > 1/2), how-
ever, it would not be expected that the range of applicability of this
equation (in terms of My and 8,) would be increased for finite a.

Figure 2 shows the boundary line (gilven by Mg(wg - 8c) = 1/2 for a = 0
above which the present conical flow solutions are applicable. The dashed
line represents the boundary below which the results of Stone's second-
order solution (ref. 5) are available.

The flow around circular cones traveling at small angles of attack
and at high supersonic airspeeds can be calculated by means of the fore-
going algebralc expressions. As was pointed out previously, these expres-
sions can be employed to determine fluid properties at the vertices of
pointed bodies of revolution other than cones. Investigation of flow
downstream of the vertices of such bodies is now underteken.

Flow Downstream of the Vertex

In this study we explolt the finding of reference 3 that many three-
dimensional hypersonic flows may be treated by a generalized shock-
expansion method which is analogous to that employed in reference 4 for
two-dimensionel flows. Specifically, this treatment is permissible when
disturbances associgted with the divergence of streamlines in planes
tangent to a surface can be considered negligible compared to those
agsocliated with the curvature of streamlines in planes normal to the sur-
face. For the case of noninclined bodies of revolutlon which are curved
in the stream direction, this requirement is satisfied when the hyper-
sonic similarity parameter is greater than sbout 1 (see ref. 1). For
inclined bodies, an additional restriction is imposed. This point is per-
haps best clarified by considering the problem of calculating flow at the
surface. )

It follows from reference 3 that when the generalized shock-expansion
method applies in the reglon downstream of the vertex, surface streamlines
can be approximated by geodesic lines. The only geodeslcs on the surface
of a body of revolution which, like streamlines, do not intersect each
other are the meridian lines. In addition, the meridian lines are the
only geodesics which, like the streamlines, pass through the vertex. When
the shock-éxpansion method is applied, then, surface streamlines are
approximated by meridian lines. Strictly speaking, however, this can be
the case only when a < <1l. (It should be noted that this is always
true, independent of a, for the extreme windward and leeward streamlines.)
Evidently, then, the generalized shock-expansion method should be appli-
ceble to curved bodies of revolution only at smell angles of attack in
flows characterized by a value of the hypersonic similerity parameter
greater than about 1. .

ey
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The procedure for determining flow conditions at the surface of a
1ifting body is entirely amnalogous to that employed in the application
of the shock-expansion method to the nonlifting body (ref. 1}. For
example, the Mach number on the surface at the vertex is obtained with
the aid of equation (20). The variation of Mach number downstream of
the vertex is then obtained by means of the isentropic expansion relation
(see ref. 1)

g - 8p = sin-t = - ginl - 4
M, Mg

7 T _ ¥ + 1 _ - Y + L
N7 T fen ~/(7-1)(M32-l) van (7 - 1) (Mp% - 1)

(33)

where A and B are different points on the same meridian line (or stream-
line). If the Mach number distribution is known, the pressure distribu-
tion (in coefficient form) on the surface is readily obtained with the

aid of equation (22). It should be noticed that when Mc is employed,
equation (33) ylelds the Mach number distribution on the body under the
vortical l&wﬂmg This result materislly reduces the net labor associated
with carrying out the calculations to determine the pressure distributlons
around the body downstresm of the vertex since the pressure rise across
the shock need be considered only in the plane ¢ = O (gge eq. (22)). It
results, too, that a relatively simple expression for EE£ -’ the initilsal
gslope of the normal-force-coefficient curve, can be obtained. The devel-
opment of this expression follows.

The expression for the normsl-force coefficlent on a body of revolu-
tion mey be written

1 A%
CN=———?,_‘é-—2—ff £ r cos ¢ dp dx (3L)
MPxa® P

where d is the dismeter of the base and r is the local radius of the
body. Differentiating expression (34) with respect to o« eand employing
the condition of constant entropy on the surface results in

3Tt is reasoned that since a vorticel layer exists around the body
gsurface at the vertex, then a vortical layer must exist downstream of
the vertex as well.
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dCy sin 28y 4 /N
B ki [[BEFED v @

This expression may be rewritten in terms of the initial normsl-force- .
curve slope for a cone tangent to the body &t the vertex; namely,

et QB [ DO o

where the. subscript TCN refers to a cone tangent at the vertex. The

calculations necessary to determine the initial normal-force-curve slope
dCy

for a body of revolution are relatively simple, since 3= oy DeY eagily

be obtained from Stonets first-order theory (ref. 6) or from chart 8 in

reference 8. The Mach number and pressure distribution along the body

mey be obtalned by the coniecal shock-expansion method presented in refer-

ence 1.%* Having determined these distributions, one may eassily evaluate

the integral term in egquation (36) by numericsl integration or by graphical

nmethods.

In order to determlne fluld properties in the flow fleld other than
on the surface, 1t is necessary to know flow conditions Jjust outsife the
vortical layer downstream of the vertex. These conditions may be deter-
mined in the same manner as before except that now initial flow condi-
tlons externally adjacent to the vortical layer at the vertex are
employed. TFor example, the Mach nunber at the vertex is determined by
means of equation (19). Equation (33) is then employed, as before, to
obtain the Mach number distribution downstream of the vertex. When flow
conditions along this layer in a meridisn plane have been established,
fluld properties throughout the plane may be calculated after the manner
described in reference 4. Application of the generalized-shock~expansion
method for determing the flow field in any meridian plane is discussed
in Appendix B.

Simplified Expressions for Slender Lifting Bodies

In the case of slender bodies traveling at very high Mach numbers
(again o < < 1) the calculations of fluid properties at the surface
become relatively simple and, hence, merit special attention. As in the
case of the nonlifting body, a hypersonic slender-body theory yielding

4Tt is clear that the shock-expansion method discussed previously in
the present paper may also be used since the expressions developed herein
reduce identically to those of reference 1 when o = O.
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explicit solutions for the Mach number and pressure at any point on the
surface of the body can be obtgined. These solutions may be summarized

(from Appendix C) as follows. The local Mach number at any point is given

by the relation

My

M= (37
1- ;l (Myew)( 1 -%)
where
7 -
. (Ms)q)=o 14+ ——= (MSGN)ZI:l + ln<5N> <N) <N><%— -1 :' o
MN — Ee
(M )¢_o[2ws (1 - cos @) + <:N sinqu:l}
and
2
Bs By _ e _ )
(Eﬁ Q=0 - l:zs L:)s >T p=0
2
o (y + 1)2M04[(ws)cp=o + o{!
(Mg) = —
¥ eyMy> (wg)pao + os]z - (7 - 1)} {(7 - 1)M02[(ms)cp=o + mT + 2}
_ Y
eE;C‘vEe 7| (wgdgmg ¢ “T - (7 - 1)

27’M02(ws +a cos )2 - (7 - 1)

M.Z(wg + & cos m)a{('y - 1)15402[(%)cp=o + m]z + 2}

2
2 2
Mozl:(ms)¢=b + cr.J [(7 - )My (wg + o cos @) + 2}
Unless otherwlse designated, wg in the above expressions 1s given by

wg = (Ws)gpog + A(L - cos @)

(IO T [T [ LTI ]

i
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and (wS)m=o 1s determined from equation (C7) in Appendix C. Now

< >
1 8
N

1+T

where

o)
T eopw)

" and, of course,
€ =a -1

The pressure coefficient at any point on' the surface may be obtained from

the expression
(M ) _ 27
Pg s/g=0 _ 7 - 1 <'_ B[t
<%> My 5 (MSSN)CP=O ) 1 (38)
®=0

Tt is interesting to note that equations (37) and (38) predict the ratios
of local to free-stream Mach numbers, and local to free-stream static
pressures to be the same at corresponding points on related bodies, pro-
vided that the flow fields sbout these bodies are related by the same
respective values of the hypersonic similarity perameters MoBy and Moa.
These predictions5 are identical to those of reference 9 for inviscid
flow gbout slender three-dimensionsl shapes. Hence, these expressions
readily lend themselves to solutions in terms of MoBy and Moo in tab-
ular form. Calculations over a range of Mgdy from 0.6 to 3.0 and ao/By
from O to 1 were carried out for flow at the vertex of a body of revolu-
tion asnd the resulis of these calculations for the flow parameters

(MS)CD=O (PS/PO)CP"‘O

My 7 T (Modm2
increments of @ from 0° to 180° Thus, for a given Mody and Mqa, the
Mach number on the surface of a body downstream of the vertex is readily
obtained with the aid of these tabulated parameters when used in conjunc-
tion with equation (37). The pressure coefficient anywhere on the surface
of the body is easily calculated by means of equation (38).

STn the case where o = 0, the expressions developed in the present
paper reduce identically to those presented in reference 1.

, end (MgBy)y,_, ere tabulated in teble I for 30°
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The results from table I may also be used to good advantage in deter-
nining the initial normal-force-curve slopes for slender bodies of revolu-
tion. For example, from Appendix C there is obtained

a 2 g 1 ] A

7&% o =8 (—é-) BN _d"C%{|TCN~O/‘ [l -2z > L (MN51\I)<1 - %)F(%)d(%) )
where

EEE

dat TCN

=2 _ o o
i Cﬁd%y-l [1+Z—;ﬁ (MOSN)E}{ﬁAL;—l- (MOSN)Z]EL+ 7(M08N)2]Gé§> _<.Z_§.> (MOSN)Z}

o TE @ b2 oo

Hence, the pertinent flow parameters necessary to determine the initial
slope of the normal-force-coefficient curve by means of the above expres-
sions may be obtained from table I for the casge of GJBN = 0.

EXPERIMENT

In order to obtain a check on the predictions of the preceding
theoretical enalysis, the pressures acting or the surfaces of 1lifting
bodies of revolution corresponding to values of the hypersonic similarity
parsmeter K from 0.60 to 1.68 at Mach numbers from 3.00 to 5.05 were
determined experimentally. The bodies were tested at angles of attack
up to 150. A brief description of these tests follows.

Test Apparatus

Tests were conducted in the Ames 10- by li-inch supersonic wind
tunnel. A detajled description of the wind tunnel and auxillary equip-
ment may be found in reference 10. The pressures acting on the model sur-
faces .were measured with a mercury U-tube manometer or by means of McClecd
gages vwhen the pressures were low enough to be recorded on the latter.

Pressure-distribution models were mounted on a Od model support and
on 5°, 109, and 15° bent supports. The test modeld were two tengent ogives
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having fineness ratios 3 and 5 and two cones having the same vertex angles
a8 the ogives., The dimensione of these models and location of the pres-
sure orifices are shown in figure 3.

Tests and Procedure

o Pressures on the model surfaces were measured at 0°, 5°, 10°, and
15" angles of atback at test Mach numbers of 3.00, k.25, and 5. 05 The
Reynolds numbers (based on maximum diameter of the ogives) were 1.09
million at Mach numbers 3. OO and 4. 25, and 0.52 million at Mach number

5.05.

The pres3dures eround the cone surface (0° to 360°) at meridian sta-
tilons h5° apart were recorded simultaneously at each Mach number and
sngle of attack. In the case of the two ogival models, the pressures
were recorded at meridian stations 90 apart Each model was then rotated
150 gbout 1ts longitudinal axis (except at 0° angle of attack) end the
process repeated.

Schlieren photographs of the bow shock waves 1n three meridian planes
were also obtained.

Accuracy of Test Results

The veriation .in Mach number from the nominal value did not exceed
+£0.02 in the region of the test sectlon where the models were located.

The precision of the computed pressure coefflcients was affected by
inaccurscies in the pressure measurements, as well as uncertainties in the
gtream angle and the free-stream dynamlc pressure. The resulting errors
in the pressure coefficients were generally less than +0.005 throughout
the Mach number range for all angles of attack. The merlidian angles at
which the pressure coefficients are plotted are considered accurate to
within #1°.

COMPARISON OF THEQRY WITH EXPERTMENT AND DISCUSSION OF RESULTS

Flow at the Vertex

It will be recalled that one of the fundamental sssumptlons in the
development of the conical flow theory weas that the conlcsl shock remains
circulsr when the cone 1s inclined. It is sppropriaste to examine the
validity of this assumption before proceeding with a comparison of the
theoreticel and experimental surface pressures. To this end, schlieren
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evidence on the shapes of the conlical shocks for the two test cones at
Mach number 5.05 is presented in figures L and 5 for angles of attack of
0%, 59, 10°, and 15°. The data shown in the figures were obtained by
measuring the angle of the shock in the schllieren photographs at various
meridisn stations. Theory is compared with experiment in a cross-sectlional
plane at an erbitrary distance downstream of the vertex. It is observed
in figure 4t that the conical shock attached to the slender cone remains
nearly circular for angles of attack up to 10°. At o = 159, the engle
of gttack is greater than the cone half-angle and, as might be expected,
the shock is no longer circular. However, in the case of the blunt cone
(fig. 5), the conical shock remalns essentially circular for all angles
of attack up to and including 15°. It would appear, then, that at least
for moderate cone angles, so long as the angle of attack is less than the
semivertex angle of the cone, the assumption of a clrcular conical shock
made in the analysis 1s Justified.

The second baslc assumption employed in the development of the conical
flow theory of this peper is that @ - 8 < < 1. It is spparent that this
condition is best satisfied for blunt cones and for high Mach numbers.

The accuracy of the theory might be expected, therefore, to improve both
with lncreasing cone angle and increasing Mach number. The predictions
of theory and the results of the pressure-distribution tests for the two
test cones (8¢ = 11.142° and 8¢ = 18.92°) are shown in figures 6, 7, and 8.
The dats are plotted in the form of surface pressure coefficient as
a function of the meridian angle ¢.6 It is observed in these figures
that the predictlions of theory, when appliceble, are in good agreement
with experiment for the Mach numbers and angles of attack presented. It
is evident also that at the highest angle of attack (a = 15°) the ‘theory
is less relieble on the leeward side of the body. Although this result
is due in part to the limitations of the theory, it is also clear that
the viscous effects of the flow are influencing the pressures to a greater
extent over the leeward portion of the body. It can also be deduced from
these flgures that agreement between theory and experiment is better for
the blunter come, particularly at the higher angles of attack. It is
indicated, therefore, that the predictions of the conical flow theory of
this paper will yleld more relisgble results when the parameter a/Bc < 1.
In the lower range of Mo and 8. (fig. 6) where the present conical flow
theory is not appliceble (see fig._e), Stone's second-order solution
(ref. 11) epplied in the manner described in reference 12 yields results
which asre in good agreement with experiment.” It is observed in figure 7
€Tt will be noted in these and subsequent figures that the data are
often plotted at meridian stetions slightly different from 0°, 459, 90°,
ete. This resulted from inaccuracies in rotational positioning of the
model.

"Due to the limited range of the results presented in the tables of
reference 5, comparison can be made only for the slender cone and then only
for Mach numbers 3.00 and L.25 without resorting to extrapolation. Although
the agreement between Stonel's results and experiment appears to be better
at o =-10° than at o = 59, this result must be attributed to the msnner
in which the flow parameters presented in reference 5 were interpolated.
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that both methods yield comparable results over the engle-of-attack range
at Mach number 4.25. Hence, 1t appears that the two theories tend to
overlap in regards to thelr usefulness over the range of My and 8,.

It should be mentlioned here that the treatment of inclined cone flow

&8 presented by Ferri in references 7 and 13 was applied to the cases

under discussion in the present paper. Ferri's method did not yield
results as good as either Stone's second-order theory (where applicable)

or the conical flow theory of the present paper. In fact, inconsistent
results were obtained when the method was applied according to references T
and 13. This discrepancy may be traced to what appears to be an inconsist-
ency between equation (55) in reference 7 and equation (55) in reference 13.

From the precedlng comparisons of the experimentelly determined sur-
face pressures and shock-wave shapes with the predictions of the conical
flow solutions of this paper, it is indicated that the latter solutions
may be employed to predict the flow properties about a 1lifting cone at
high supersonic airspeeds wilth good accuracy when the angle of attack is
less than the cone half-sngle (i.e., when a/8, <1). It is therefore
suggested that these solutions may be pearticularly useful for determining
conical flow flelds about lifting cones over the range of M, and 8, not
treated in the M.I.T. tables (ref. 5).

Flow Downstream of the Vertex

It remains now to determine the eccuracy with which the solutions
for flow about 1ifting cones in combination with the isentropic expansion
equetions predict the flow ebout bodies of revolution other than cones,
The pressure distributions on the surfaces of two ogives (having fineness
ratios 3 and 5) at Mach numbers 3.00, 4,25, and 5.05 and at angles of
attack of 0°, 5° s 10° , and 15° were calculated using the methods of this
paper. These distributions are presented in figures 9, 10, and 11 for
values of the hypersonic similarity parameter, ¥, varying from 0.60 to
1.68. Alsc shown are the results of the pressure—distrlbution tests for
the two oglval models.

Comparing first the predictions of theory with experiment for the
case of zero 1ift (fig. 9), we observe that the accuracy of the shock-
expansion method generally improves with increasing K. This trend is,
of course, the same as was observed Iin reference 1l for comparisons of the
predictions of the shock-expansion method with those of the method of
characteristics, The results of a characteristics solution for the
1/d = 3 ogive at Mgy = 3.00 (from ref. 14) are also shown for comparative
purposes. Characteristics solutions are not availlsble for the other cases;
however, the results of Rossow (which were obtained by correlating the
pressures obtained by charscteristics solutions according to the hypersonlc
similarity law and presented in ref. 15) are shown. As might be expected,
Rossow's results are generslly in good agreement with experiment slthough
there is a slight underestimation of the pressures near the base of the

L
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body at Mp = 5.05. This is attributed to the viscous effects of the flow
which sre probably influencing the pressures st this Mach number. In any
event, it is evident that the predictions of Rossow and the shock-expansion
method are in good agreement at the highest value of X (K = 1.68).

It is of interest now to determine the relisbility of the predictions
of the shock-expansion method for lifting bodies. As shown in figure 10,
the theory yilelds good asgreement with experiment for the fineness-ratio-5
oglve on the windward side of the body except at Mgy = 3.00 (X = 0.60).%
Some disagreement is evident, however, on the leeward side of the body
at all Mach numbers. In the case of the fineness-ratio-3 ogive (fig. 11),
agreement is generally better over the entire body at each angle of attack,
particularly at the higher values of K (K>1). It will be recalled from
figure 9 that at o = 0° the longitudinel pressure distributions on both
ogives indicated that the accuracy of the shock-expansion method increased
as K 1increased. It 1s indicated in figures 10 and 11 that, as would be
expected, this trend carries over to the case of lifting bodies.

Tt appears in figures 10 and 11 thet the most important factor
influencing the accuracy of the method 1s the relisbility of the conical
flow theory at the vertex, since the inaccuracies at the vertex appear
to be reflected strongly in the pressures downstream of the vertex. The
question naturally arises, then, how good are the predictions of the
shock-expansion method when experimentally determined initial conditions
at the vertex are employed? To answer this question, the pressure coef-
ficients on the surfaces of the two ogives under discussion were deter-
mined in the following manner. Initial conditions at the vertex were
determined from the measured static pressures around a cone (corresponding
to the vertex angle of the body) in conjunction with the meagured shock-
wave angle (in the plane ¢ = 0) obtained from schlieren photogrephs of
the conical flow field. The pressure coefficients downstream of the ver-

+tex were then calculated as before. The results of these calculations

for Mach numbers 3.00, 4.25, and 5.05 are compared with experiment in
figures 12 and 13 for o = 15°. Results for a = 150 are presented because
at this angle of attack the applicability of the conical flow solutions

is most marginal. Tt is observed from figure 12(a) that the theory yields
results which indicate an underexpansion of the flow on the sildes of the
body (¢ = 45° and @ = 900). This result is not surprising since, at this
low value of K (K = 0.60), it would be expected that the true streamlines
would deviste considerably from a meridian line. In other words, flow
disturbences in planes tangent to the body at the surface are no longer
small compared to those in axial planes. Hence, the flow along & true
streamline travels through a greater resultant angle than that represented
by a meridian line. It can be seen from figures 12(b) and 12(c) that as
the Mach number and, hence, K, is increased, better agreement 1s obtailned.

8Tt ghould be noted in figure 10(a) that Stone's second-order solution
is employed at the vertex since the conical flow theory of the present paper
is not applicable for these conditions (i.e., Mg = 3.00 and 3¢ = ll.h2°;
see fig. 2).
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This is attributed to the Ffact that the streamlines of the flow deviate
less from meridian lines as K is increased. The same general trend may
be noted in figure 13 for the fineness-ratia-3 ogive. However, in this
latter case, over-all agreement appears to be better. In fact, good
results are obtained for values of K > 1 except on the extreme leeward
gside of the body where it is probable that viscous eéffects are influencing
the pressures. There may be some separation of flow over. this portion of
the body although no evidence of this could be determined from the schlie-
ren photographs. In the case of‘the finenesw=~ratio-5 oglve, schlieren
evidence indicated flow separation on the leeward side of the body for all
Mach numbers at o = 150. It may be deduced from these figures that the
application of the shock-expansion method will yleld better results when
the initiasl conditions at the vertex are determined from cone tests

rather than from presently available cone theory. "

There now remeins the determination of the accuracy of the predic-
than the surface) sbout a 1ifting body of revolution. To this end, flow
in the plane of symmetry (¢ = 0° and ¢ = 180°) was calculated (after the
manner discussed in Appendix B) for each ogive traveling at a Mach number
5.05 and at an angle of attack of 10°.) Flow in a side meridian plane
(p = 90°) was also calculated for the fineness-ratio-3 ogive. The result-
ing shock-wave shapes are compared wlth the actusl shapes (obtained from
schlieren photographs) in figure 14. The theoretically determined conical
shocks are also shown for contrast. In the case of the fineness~ratio-3
oglve (K = 1.68 and o8y = 0.53), theory and experiment are observed to
be 1n excellent agreement in the plane of symmetry. The same observations
mey be made for the side meridian plane. In this latter comnection, it
1s of interest to point out that essentially the same result would have
been obtained if the shock were assumed circular in cross-sectional planes
and its location determined from the calculations in the plane of symmetry.
In view of the agreement between theory and experiment, it is indicated
that when K 1s greater than 1 and a/dy 1s sbout 1/2 or less, the shock
is essentially circular in cross-sectional view of the flow field gbout
a pointed body of revolution. In the case of the fineness~ratio-5 ogive,
the poor agreement on the leeward side of the body might be expected since
not only is KX marginel for the application of the theory but, more
importent, a/8y i1s relatively large (of/by = 0.88). It should be pointed
out that if experimentally determined initial conditions are employed,
good agreement with experiment downstream of the vertex is obtained.

Although the predictions of the generalized shock-expansion method
have been checked only at the inner and outer boundarles of the flow
field, it is expected that equally good resulis would be obtained at
intermediate points in the flow field. This conclusion is based on the
fact that the bow shock waves were obtalned as a result of the calculsa-
tions of these intermediate points.
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. Hypersonic Slender-Body Theory

The gredietions of the hypersonic slender-body theory for o = 0°
end a = 5° are compared with experiment in figures 15 and 16. It appears
from a comperison of figures 9 and 15 that the slender-body theory will
yield more accurate drag coefficients than the more general theory at
a = 00, particularly et the lower values of K. This result, although
doubtlessly fortuitous, is the same as that found in reference 1. In the
case of 1lifting bodies, it appears that the slender-body theory yields
results which are somewhat less satisfactory at all values of K. However,
the theory displeys sufficient accuracy for many englneering purposes
even at K = 1. 7This is particularly evident for the more slender of the
two bodies as indicated in figure 16(b). In view of its simplicity, the
slender-body method should prove useful and 1ts application is further
facilitated by the presentation in this paper of tsbulated values of the
pertine?t flow perameters for selected values of Mody and m/SN (see
table I).

Normsl -Force Coefficlents

It is appropriste now to consider briefly the forces experienced by
the ogives. To this end, normal-force coefficients were obtalned by
integrating the theoretical pressure distributions for the two oglves at
a Mach number of 5.05. The results of these calculations are compared
with those obtained from integrated experimental pressure distributions
in figure 17 for values of K of 1.01 and 1.68. It is observed that
theory ylelds values of Cy which are, in general, higher than those
obteined by experiment. However, agreement improves with increasing K.
Equation (36), as well as the hypersonic slender-body solution (eq. (39)),
appears to yleld satisfactory initial normal-force-curve slopes at values
of X @as low as 1. Axial forces have also been obtained for these ogives
and the shock-expansion method is found to epply with essentially the same
accuracy.

CONCLUDING REMARKS

The flow sbout a lifting body of revolution at high supersonic air-
speeds was investigated analytically. With the assumptions of conlcal
flow at the vertex, high supersonic Mach numbers, and low angles of attack,
simple approximate solutions were obtained which yield the Mach number
and pressure distributions on the surface of the body. Surface stream-
lines were spproximsted by meridian lines and the flow field in meridian
planes was calculated by means of the generalized shock-expansion method.
In the special case of slender bodies, simple explicit expressions were
obtained for the Mach number and pressure distributions on the surface.
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Surface pressures and shock-wave shapes were obtained experimentally
at Mach numbers from 3.00 to 5.05 for two ogives having fineness ratios 3
and 5 and for two cones having the same vertex angles as the ogives. The
predictions of the methods of this paper for the surface pressures were
found to be in good agreement with experiment at values of K about 1,
or greater, when a/SN (the ratio of angle of attack to semivertex angle)
was less than asbout 1/2. For increasing values of this parameter, agree-
ment deteriorates but may still be considered fair for values of of8y
up to gbout 1. The generalized shock-expsnsion method yielded very good
agreement with experiment for the shape of the bow shock at K = 1.68 and
m/&N = 0.53. It was further indicated that the bow shock remains essen-
tlally circular in cross section for angles of sttack up to approximately
one half the semivertex angle when K 18 greater than 1.

Ames Aeronautical Laboratory
Nationel Advisory Committee for Aeronautics
Moffett Field, Calif., Jan. 13, 1955
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APPENDIX A
DETERMINATION OF FL.OW CONDITIONS AT THE VERTEX IN THE PLANE OF SYMMETRY

Due to the symmetry of the flow in the plene of symmetry,

du ov
—.=O -—-=O =O
3 3 N

Now from the flow geometry

u=YV cos(w - 8)

v = -V sin(w - 8)
end from equation (la)

The flow is therefore irrotational snd the following relation holds

< = - tan(w - 5)as (A1)

Substituting the above expressions in eguation (5) results in

.L-_i[fz 1 ||cot( 8)( 1 98 t t 5)35
5 |\¥ - cot({w - +3,) " cotw+ an(w - % +

=0 (a2)

CSng - 5) QEJ - tan(w - 5) %%

Vsesinw o9

Equetion (A2) is not amensble to algebraic solution. However, since it
differs only in the term containing ow/dp from the equivalent equation
defining the axisymmetric flow field, a solution analogous to that employed
In reference 1 is suggested. Consistent, then, with the restrictions
imposed on the flow field in this analysis, namely, (w -8) <<1 radian,
equation (A2) reduces to
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_ _ g‘l - 2 - 2 1 a'W'_
l.(a) S)COtw+aw[l M(m 5)]+m56—0 (A3)

where M and, hence, the magnitude of V are considered constant (see
ref. 1). Now from equation (15)

dw sin wg
-&E = iVOE m (l - 17 cot ws) (A}"‘)

vhere Ow/dp is positive at ® = O and negative at @ = x. Hence, near
the surface of the cone, equation (A3) reduces to the linear equation

g—:=—(l+&) -
or
w=-8=(w-58a)(2+ o) (A5)

where (since 1 << 1)

Vo 5Bin wg

g = ———

€
V  sin®®,

Combining this relation with equations (A3) and (A5) results in

S8 (w - 5c)(2 + 0') cot w - 1 - a sin25¢

W 1 - M(w - 5,)3(2 + 0)%  sinwl[l - M3(w - 8.)2(2 + 0)2]
(4A6)

which can be integrated to yield (substituting in the boundary conditions)



8 -~ 8, =0 8inBelcot w ~ cot 3,)(1 -% sinabc{cscz[ﬂc - ————1-——] + csca[ac + ——-1—]}> +
M(2 + o) M(2 + a)

6HEE NI VOVN

(2 + 0)tan Besec de

(2 + 0)M2tan®Be ~ 1

111[1 + (m - Sc) cot 3(:] +

sinz[ﬁc - —--—--:'-'———]{oa.n Be + M[1 + 0 + (2 + 0)M tan Bc]} - o sin®B ML ~ (2 + o)M tan 8,]
M(2 + o)

2 _ 1 - o an
2 gin [&c oS 0{)](2 + ML - (2 + o)M tan 8]

lo[l + (2 + o)M(w - 8c)] +

sinz[ﬁe + m]{tan 5o + M[(2 + o)M tan 8¢ - (L + o) ]} + oM 81n®B8,[1 + (2 + o)M tan Bo]

2 sinE[Bc + M(e_iu)_](e + o)ME[L + (2 + o)M tan 8]

Infl - (2 + o)M(w = 8¢)] (A7)

If M in equation (A7) is taken as the Mach number just downstream of the shock, then flow
conditions at the shock (i.e., Mg, wg, end 8g) cen be obtained by the simultaneous solution of equa-
tions (6), (7), (A7), and the oblique shock-wave relations =
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2 (r+ 1) Mo *s1n° (g 2 @) - $[MoZs1n®(wg + o) ~1][7Mo2sin®(wg ¢ o) +1]
) [2yMo®sin®(ws ta) - (¥ - 1) 1[(7 - L)MoZsin®(wg + o) +2]

8

(48)
and

-1 | cot(wg = a)[Mozsinz(ws + o) - 1]

1
L= Mo® - [M®sin®(ws £ «) - 1]

(49)

To epply these equations, a value for € 1s chosen slightly less than
a. Then 1 1is fixed by equation (6) and the relationship between the
shock-wave angles is obtained by setting ¢ == in equation (7), namely,

(ws)cp.—_;n; = (ws)q)=0 =2n (AlO)

Now (ms)q)=0 is determined by solving equations (A7), (A8), and (AQ)
simultaneously where o >0 in equation (A7) and the positive sign is

used in equations (A8) and (A9). Then (ws)¢=ﬁ is determined in the

seme menner as (Wwg)y—, Wwhere now ¢ <O in equation (A7) and the negative
sign is used in equations (A8) and (A9). If the resulting value of €
(celculated from egs. (6) and (A10)) differs from thet originally chosen,
the procedure is repeated using the calculated value of €, and so forth.
Although the foregoing procedure is somewhat tedious, the number of itera-
tions can be reduced to two or three in most cases by carefully choosing

e and (wgly=o. In this connection, it has been found useful to choose &
value for (wg)p=p Which is less than the corresponding shock-wave angle

of the nonlifting body by 17, the latter angle being approximately 10 to
15 percent of o at the higher Mach numbers (Mg > 4) and 15 to 30 percent
of o at the lower Mach numbers (Mg < 4). It should be remembered that
K 1is always approximately 1.4 or greater in this analysis.

It is clear that equation (A7) should give a better representation
of the flow field in the @ = O plane than in the ¢ = x plane since
(w - 8) is always less on the high pressure side of the body. In fact,
there are cases when the combination of M,, 8., and o is such that
equation (A7) no longer applies on the leeward side of the body. For
example, 1f the body i1s slender such that the angle of attack approaches
the half-cone angle, |c| can be 1 or greater. ©Since ¢ < O in this half-
plane (p = ), 35/dw > O for these conditions and equation (A7) will no
longer represent 8 as a monotonically decreasing function of w. Hence,
it is possible that no simultaneous solution of equations (A7), (A8), and
(A9) will exist in the ¢ = plane. It is necessary, then, to obtain

<



another expreasion relating o and w in this plane, The development of such a relationship by
imposing the restriction that & < <1 radlen but w remalns arbitrary will now be coneidered.t

With the restriction that 8 < <1 radian, equation (A2) may be reduced to the form
1 ow

V sin w O (a1)

8 cot w + %% [1 - M%ein®uw(l - & cot w)?] +
where M 15 agaln considered constent, Near the surface of the cone, the sbove expression reduces
to 3

=—+Bcotw+o=0
ow
which has the solutilon
B oogcecotw+ kcae w (A12)

Combining equations (All) and (A12) end integrating the resulting expression yields (to the order
of accuracy of this analysis)

ol (4 +20 - 68)M251n®8¢ - (Bin®ds + 0) ]

- 24(0+ 1) (810°8, - 512%u) 1= W elnBols - o8 -2
gt+l)(sin - Bin"w
1+ MB1n B, )2 + aM E1n"B
3 1+.J(1+ O'MEE:III.EEQ)2+ hl‘lesin‘?ﬁc—oMesinEBc 2J(l+ o1nBe)" + ale ¢
Be . oM (0 + 1) (51020 ~ 5102wW)
|t - J(1+ MPein®6.)® + IMRein26, ~ aMPsin®s,

o(o +8inBo)
20 - M7E1n"B,(4 - o%)

[2 -sin2w(l +0 cac®Be) 17
[2 -(0+8in ac)]{sin u [1+(2+6)M251n28c -{(1+0c) YMTein®w] —Mzsin%}

(A13)

iThe method of development 1s similar to that presented In reference 1.
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where M 1s agaln chosen as the Mach number just downstream of the shock.

Hence, conditions at the shock can be determined by the iteration pro-
cedure mentioned earlier except that now equation (Al3) 1s used in place
of equation (AT). Although the former equation may be employed to deter-
mine the shock angle at @ = O as well as at ¢ = n for slender bodies,
it is suggested that equation (A7) be used to determine flow conditions
on the windward side of the body and equation (Al3) for flow conditions
on the leeward side of the body only when equation (A7) cannot be solved
simulteneously with equations (A8) and (A9). If the shock angles in the
plane of symmetry, are known, the varistion of 8 with w is known from
equation (A7). For the case where this eguation does not apply in the
plane @ = n, this variation is given by equation (Al3).

The determination of the small variations in the local velocity in
the plane of symmetry is identical to that presented in reference 1 for
the case of (w - 8) < < 1 radian. Hence, the expression for the velocilty
may be written :

Sc-ss
ws-Ss
v cos(wg - Bg) (ALY)
Vs [(5c - 8)(wg - ss)]
cos

If the velocity is known, the Mach number may, of course, be deter-
mined from the relation . :

v 2
MH )
Mo Vs> (815)

and the pressure coefficient may be obtalned with the aid of the expres-

sion
P=__2§<E§L_1> (416)
Mo= \Po Ps

where ..

Py _ 2yMo sin®(wg * @) - (7 - 1)

D, y + 1
and

-1 2')"i
D 1+ > Mg
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APPENDIX B
DETERMINATION OF FLOW IN A MERIDIAN PLANE

Flow about a lifting body of revolution may be calculated in any
meridian plane by the generalized shock-expansion method in much the same
manner as the procedure employed in reference 4 for flow sbout sirfoils.
However, the application of the method is somewhat more complicated for
the case of a body of revolution since now the influence of the conical
flow in the region of the vertex must be considered.

The determination of axially symmetric flow in the region of the
vertex of a body of revolution (K > 1) was described in reference 16.
Expressions were developed which yield the shock-wave curvature as well
as flow conditions along a line a short distance downstream of the vertex.
An snalysis entirely anslogous to that in reference 16 was carried through
for the lifting body and it was found that more genersl expressions can be
obtained which take into account the effects of angle of attack. Thus,
it can be shown that the expression for the ratio of the shock-wave cur-
vature to body curvaeture near the vertex is (consistent with the assump-
tions of the present paper)

Eg__QyMozsinz[ms-+m(cos P+1 cot wgsinZp)] ~ (¥ -1) [1.-tan(m _8y) ot BH]£$
Ky Mo sin2pysin 2[ws +a(cos @+1 cot wgsinZp) ] ®

where (Bl)

Wg = (w5)¢=o + n(L - cos o)

The function ¥ 1s defined by the expression

Crrn @]

and is evaluated at the surface outside the vortical layer by means of
the previously developed conical-flow expressions. Simllarly, expressions
for flow conditions along a line normal to the axis of the body a short
distance downstream of the vertex may be obtained. For example, the
variation of flow inclination, &, along this line is given by

¥ sin Spcos 8y ¥ sin Spcos Bp
5 =8y - Ta (v -ya) +|BB-8a+ Ta (yg =¥a) -VB y

(B2)
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where A and B are points on the line corresponding to the surface and
the shock, respectively. The reletions for the static pressure and total

pressure remain unchanged and may be written (in the notation of the
present paper)

27pKycos(p + 8)
P =Py -

- +
sin B sin 28 A(y yA)

2ypKycos(B + B) Y -y 2
Pg - Py + |:sinﬁ 1o o8 A(YB'YA) ‘;{'B—'_-_—%— (B3)

and

éﬂ Kgcos 8§
Bl (v -y
gin(w ~ 8) B y - B

~

H=EB+

H
= Kgcos 8
dw B Yy - ¥B
Hy - Hp - ———-—-Sm(w 5| (9a - ¥B) <y B) (Bk)

respectively. It should be noticed that expressions (Bl) and (B2) reduce
identically to those given in reference 16 for axisally symmetric flow.

Knowing the flow .conditions in any meridian plane in the region of
the vertex, it is now a relatively simple matter to construct the entire
flow field downstreem of the vertex. To illustrate, consider the sketch’
(flow in a meridian plene ¢ = constant):

Y

Mach line Streamlines

D
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With the oblique-shock-wave, conical-flow, and expansion equations, all
fluid properties at points M, A!', A, C, and so forth, on the body surface
may be calculated in the manner described previously in the present paper.
Hence, flow conditions along the line AB may be determined from expres-
sions (Bl) through (B4). It will be recalled that the basic condition
employed in constructing flow fields about airfolls by the generalized
shock-expansion method is that the pressure is constant along Mach lines
emanating from the surface. In the case of flow about bodies of revolu-
tion, this condition must be relaxed to account for the variation in pres-
sure due to the influence of the conical flow in the region of the vertex.
This may be accomplished in the following manner. The Mach line A'B is
constructed from the known conditions in the region MAB shown in the
sketch. The net pressure change along this Mach line (i.e., pg - Ppr)

is thus determined. This pressure difference is then assumed to represent
the net pressure change between the body surface and the shock along each
Mach line emanating from the surface downstream of the vertex. The flow
field is then constructed using this criterion in conjunction with the
isentropic expansion relations for flow along streamlines. Once the
shapes of the streamlines are calculated, the fluld properties along these
lines are, of course, determined in the same manner as those along the
surface.
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APPENDIX C

FLOW AT THE SURFACE OF A SLENDER BODY TRAVELING AT HIGH

SUPERSONIC AIRSPEEDS AND AT SMALL ANGLES OF ATTACK

If a slender body (i.e., a body on the surface of which the slopes
are everywhere small compared to 1) is traveling at free-stream Mach
numbers very large compared to 1 (again, of course, K > 1) and at angles
of attack very small compared to 1, the local Mach numbers will likewilse
be large compared to 1. It follows, then, that the inclination of the
nose shock wave will be small and, consequently, that w will always be
smell, In thie case, the relation between B and w at the vertex (in
the plane @ = 0) is relatively simple and may be obtained by integrating
the expression (see egs. (AW) and (A1l))

B _ 5 _Ews
dw & w2
which yields
By.  €Wg Sy
B = "% <% T Ws (c1)

Combining this expression with equation (Al), the relation

2
v " Sy %(82—852)+G§N<;—%?)
@) ST (o2

defining the veloeities in the plane ¢ = 0 is easily obtained. Hence,
the surface Mach number in this plane at the vertex, My, may (to the
order of accuracy of this analysis) be related to Mg by combining
equation (Al5) with equation {C2) to yield .

-1 - = :

Now the oblique shock~-wave relations for flow of the type under
consideration reduce to (at ¢ = 0O)
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4 N2
W2 - (7 + Mo (wg + a) (ch)

[2Mo2(wg + a)Z = (7 - 1) 1[{7 - L)MoP(ug + )2 + 2]

r+1

Mo (ws + a)” - Z == Mo™(ws + a)(8g +a) - 1 =0 (c5)

and

y - 1
Y+ 1

Pg
Po

= 52 4 (us + @) - (c6)

Combining equations (6), (Cl), and (C5) results in
Mo (wgta)

= .§. /(Moaﬁ%lmoqfe[hfé— z(aum)(sn-n)]

25 (o LgEvon )| 1+ 5o o) (o) J-2 (ose o)

cos Y cos™* LS
3

nio)

2
2 (Mo@"‘L;_"lMoTl> +3[l+%‘11402( By+a) (8§-n) ]}

%{Momz;_ﬁ@ (c7)

and o
2
ORERICEDI 2

There remains now the determination of 17, which defines the position
of the conical shock, in order to determine the shock-wave angle in the
plane @ = 0. To this end, the assumption of a circular conical shock is
agaein employed, but now it is deemed sufficiently accurate for the purposes
of this analysis to assume a linear variation of 1 with «; namely

=

"= 5% &

a=0
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Now from equation (Al0) there results

dn _ 1 /dws dws
d 2\ da Q= do ®=0 (09)

Consider for the moment, flow in the plane @ = x. The angle of attack
o and, therefore, € are both negative in this plane. Hence, equa-
tion (C5) may be written :

Y + 1

5 M2(wg - a)(8g ~a) -1 =0

2 2
Mo (wg - @) -

end the conical-flow expression (see eq. (Cl)) becomes (at w = wg)

sts = 8]_\]'2 + G(ws - BN)

Differentiating these expressions with respect to o and combining the
resultlng expressions yields in the limit as o = O

1
20 9%5- - 1) Lo Z [ge—m (wg - B) - (ws + 58)] =0 (c10)

Proceding in the same manner for flow in the -plene @ = O (see egs. (Cl)
and (C5)) there is obtained

2%@55’_; . 1> ~2id [- E (wg - B1) + (us + as)J =0 (c11)

Combining equations (6), (C9), (Cl0), and (Cl1l) results in

1 Y+ 1 /By + 5%)
dn _ b Wg
dooam 7+l 95-5]_\]'

Wg

At o =0 (see ref. 1)
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Ss ____ ¥odw
5= =
N /1 + L ; = (Mody) 2
and ) (c12)
7 + 1
Mg = jl + 73 (MOSN)2 J
Hence,
7 + 1 84 <' #)
(c13)

1+7—£—1<1--8—;>

where B8g/8y is a function of MoSy only end, of course, is given by
equations (Cl2). The shock-wave angle at @ = O can now be determined for
given values of M,8N and Moo by measns of equations (C7) and (C13).
Hence, the shock angle sround the entire conical shock front may easily
be determined with the aid of the expression

s = (ws)cp=o + (1 - cos o) (c1k)

Surface conditions around the body at the vertex msy now be deter-
mined after the manner described in the more general analysis of flow
about cones. For example, consistent with the assumptions basic to the
present analysis, equations (17) and (18) reduce to

_Ye _ _Us
(W ~ o1 € sin 9 (C15)
and
Ue
W— =1 + ewg(l - cos @) (c16)
p=0

respectively. Hence, the surface veloclty external to the vortical layer
at the vertex may be written
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2

) 2
[—(V}:),—f:;] =1 + 2ewg(l =~ cos @) + <-§-§—Ei> sinZp (c17)

and the corresponding Mach number, Mg, may be related to (MN)(p=O by
combining equation (19) with this expression to yield

2
(M) - e

Consistent with the assumptions basic to the present analysis, the Mach
number directly on the surface at the vertex (i.e., inside the vortical
layer) may be obtained from the relation (see eq. (20))

2 Ec'fEe
G&) =e (c19)

where
Ec-Be
e Ycy

1
) 27M02(ws + ot,)qa,:o -(y-1) |7 Moz(ws + o cos q))2 [(7 - 1)V (wg + @)ci:o + 2]
2yMo2(ws + & cos @)=~ (7 - 1) MoZ (wg + d’);:o [(7' - 1)MoZ(wg + o cos @) 2+ 2:1

(c20)
Equations (C3), (C18), and (C19) may now be combined to yield

) ( Ms)q2>=o{1+ -7—;—1- (Ms3N) 2[1 + 1n<g-g.>2- @-1%)2-2 -55&_ (g% - >]}¢=O

M2 =
N Ec-Be ® 2
(e 7Cv ><{}_- Z_;_]_- (MNG);__:ol:Q -—€§ (1-cos @) +(%)§ﬁ> sinch:l}
(ce1)

The expressions Just derived provide the Mach number on the surface
at the vertex. If My is known, the Mach number anywhere on the surface
of the body may be obtained by means of the. expression (see ref. 1)

M=

My _ _
1.-"1-;—1 (MNSN)< ) %>- : (ce2)
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Now the pressure coefficient is given by the expression

T Mg® ( >(p=o (Ps)peo ' (c23)

The pressure rise across the shock is given by equation (C6) and the ratio
of the pressure anywhere on the surface to the pressure at the shock at

® = O can be expressed (to the order of accuracy of this analysis) in

the form

p___ [(Ms)cpm] 71

(PS)CP=O M

This expression may be combined with equation (C22), and equation (C23)
can be written

2y
(Ms) _ y-1
P - i (Po> Tkl SN)¢=°< u> o

yielding the pressure coefficlent at any point on the surface of the body.

The initisl normal-force-curve slope for slender bodies of revolution
may easily be determined in the following manner. To the order of accuracy
of this analysis, equation (36) may be reduced to the form

_ (1 Y5, 2 “p Pu (2}1@
=o —8<€) °N T |gey | Px B\ N (c25)

Consistent with the assumptions basic to the present analysis, the fol-
lowing relations msy be obtained; namely,
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and

These expressions may be combined with equation (C22) and (C25) to yield
741

%Im ) 8@) °N C;ZN TCI‘Tf 1[1 e (MNSN)G“ i gﬁﬂﬁ(%) dGﬁ) (026)

There remains now the determination of the initial normal-force-curve
slope for & cone tangent to the body at the vertex. This slope may be
expressed as

dCN - fﬂ % <pN>
= - (o] C
do [mey thMoabN / da \Pg cos ¢ &p ( 27)

NoW the ratio of the static pressure anywhere on the surface of a lifting
cone (o < <1) to the free-stream static pressure may be expressed in the

form \
(1 - V:>7 7<H;> (c26)

where Ve i1is the local velocity externally adjacent to the vortical layer
and

wa 1

g - [ (7 + )Mo%(wg + a cos )2 ]7-1[27M02(ws-+a cos ¢)2 - (r-1) T71
Ho (7 =1)Mo®(wg +a cos ¢)2 + 2 y + 1

(c29)

Differentiating equation (C28) with respect to o and retaining only
terms which are functions of ¢, we obtain in the limit as o —> O

4
&P\ PN _y de oo (@)2 i (McBy)
da, P PO Moaws 8a, MO -

(Mows) 2[1 +Z-2—1 (MoBy) 2] [1 +7(MoBy) 2]
(c30)
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From equations (6) and (Cl3) there may be obtained

.. 22k @]
TEG-R)

Combining this expression with equation (C30) and noting that (see ref. 1)

27
N S 7t
) -+ (i)
a=0

equation (C27) may finally be written

M<ﬁ@W%m%w@@w}

“do | oN (MoBr) {7+1 g}g _ ]"

(uop) |
(c31)
where My, Mg, and 8g may be determined from reference 1 or by setting

= 0 in the pertinent expressions previously derived in the present
paper
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